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Introduction

• Inverse problems involve determining the causes or parameters of
a system based on observed outcomes

A(x) + ϵ = b

· input observations b ∈ Rm

· forward process A : Rn → Rm

· target parameters x ∈ Rn

· noise ϵ ∈ Rm

•Machine learning has been used to address many challenges in ill-posed and
large-scale inverse problems, including full inversion (surrogate modeling), regular-
ization, uncertainty quantification, and more

•Encoder-decoder networks

x ≈ (d ◦ e)(b)
· e : Rm → Rr maps b to a latent variable z

· d : Rr → Rn maps from z to x

▷Popular choice in many learning tasks

▷Can be used to directly learn map from b to x

•Autoencoders

(db ◦ eb)(b) ≈ b

· eb : Rm → Rrb compresses b to zb
· db : Rrb → Rm expands zb to b

▷ Special case of an encoder-decoder network

▷Maps input b to itself

▷Used in dimensionality reduction, denoising

•Aim to leverage latent representations through Paired Autoencoders for Infer-
ence and Regularization (PAIR).

PAIR

•The PAIR framework is data-driven, and requires learning:

▷ input b autoencoder, (db ◦ eb) : Rm → Rm, unsupervised

▷ target x autoencoder, (dx ◦ ex) : Rn → Rn, unsupervised

▷ latent inverse map, mi : Rrb → Rrx, supervised

▷ latent forward map, mf : Rrx → Rrb, supervised

•Potential uses:
▷x ≈ (dx ◦mi ◦ eb)(b) can approximate the inverse process

▷b ≈ (db ◦mf ◦ ex)(x) can approximate the forward model

Linear PAIR for Computed Tomography

Linear Autoencoders:

(dx ◦ ex)(x) = DEx

ex(x) = Ex = zx, E ∈ Rr×n

dx(zx) = Dzx ≈ x, D ∈ Rn×r

Empirical Bayes risk approach:

•Work directly with realizations of random
variable X

X = [x1, . . . ,xN ] ∈ Rn×N

•An optimal choice of encoder and decoder

Ê = U⊤
X,r D̂ = UX,r

from left singular vectors of X correspond-
ing to the r largest singular values [2, 3]

Linear Latent Mappings:
To find the optimal mapping between latent
spaces, let

ZX =

 | |
ex(x1) . . . ex(xN)

| |


ZB =

 | |
eb(b1) . . . eb(bN)

| |


•Optimal linear latent inverse mapping

Mi = argmin
M

∥MZB − ZX∥2F
= ZX(Z

⊤
BZB)

−1Z⊤
B

•Optimal linear latent forward mapping

Mf = ZB(Z
⊤
XZX)

−1Z⊤
X

Note: also holds for nonlinear autoencoders

Computed Tomography Example:

Inputs :

• Sinogram observations with 5% noise

• 90× 36 pixels, vectorized to b ∈ R3240

Targets :

•Randomized Shepp Logan Phantoms, rep-
resenting brain anatomy

• 64× 64 pixels, vectorized to x ∈ R4096

Average relative error norms for test
dataset comparing autoencoders, PAIR ap-
proximations, and TSVD approximations
for inversion and forward propagation.

Linear PAIR approximations for different sized latent spaces. Note that rx and rb
are not required to be equal, but in this case we take rx = rb = r.
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Nonlinear PAIR for Deblurring Example

MNIST Deblurring Example:

Inputs :

•Blurred (Gaussian) MNIST digits

• 28× 28 pixels

Targets :

•Original MNIST digits

• 28× 28 pixels

Autoencoder Architecture:

• 5 layer CNN, 236 parameters

• zb, zx ∈ R7×7×3

•Linear latent mappings

PAIR inversion vs encoder-decoder
direct inversion for different num-
bers of supervised samples

Test examples and out-of-sample im-
ages

Conclusions

•PAIR is a new data-driven framework for
inverse problems

•Theory for linear PAIR exploits a low-rank
SVD approximation with inherent regular-
ization

•Optimal linear latent maps defined for both
linear and nonlinear autoencoders

• Superior for problems with many unpaired
samples but few paired samples

•Numerical results show generalizability

Future Applications of PAIR:

•Approximate adjoints

•Define new data-driven priors
(e.g., approximate mean and
prior covariance)

•Create surrogate models using
a reduced model for forward
propagation of dynamical sys-
tems
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